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Explicit Calculations on Small Non-Equilibrium Driven Lattice Gas Models
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We have investigated the non-equilibrium nature of a lattice gas system consisting of a regular
lattice of charged particles driven by an external electric field. For a big system, an exact solution
cannot be obtained using a master equation approach since the many-particle system has too many
degrees of freedom to allow for exact solutions. We have instead chosen to study small systems as
a first step. The small systems will be composed of between two and four particles having two or
three possible values of some parameters. Applying periodic boundary conditions and a hard-core
or an exclusion-volume constraint and imposing conservation of particle numbers via Kawasaki-type
dynamics (particle-hole exchange), we are able to calculate the exact solutions of the steady-state
relative probability density function, ri, associated with each configuration of the small system.
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I. INTRODUCTION

In nature, the equilibrium state is the exception.
In both real physical and biological systems, non-
equilibrium phenomena are more common [1–3]. Non-
equilibrium states display overwhelmingly rich and com-
plex behavior (both deterministic and stochastic), such
as phase segregation and separation, pattern formation,
self-assembly, turbulence, and chaos. When studying
systems in thermal equilibrium from a statistical me-
chanics viewpoint, one utilizes the framework estab-
lished by Gibbs [4], i.e., first specify the microscopic
Hamiltonian of the system and then express the time-
independent or stationary distribution over the config-
uration space in terms of the Boltzmann factor. The
observable averages are then calculated using these dis-
tributions. This has allowed equilibrium statistical
mechanics to reach a rather mature status. In con-
trast, there is no sound foundation for studying non-
equilibrium phenomena, so these phenomena are far less
understood and are much more difficult to study. At the
moment, there is no well-established systematic analyt-
ical recipe for calculating the averages over known en-
sembles. Instead, one has to rely on simulations and/or
computational approaches or work with small systems.

Part of the difficulty with non-equilibrium systems is
that the distributions associated with these systems are
generally time dependent. The time evolution of such
systems are governed by a master equation. One possible
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approach is to study systems which have reached a non-
equilibrium steady state where the distribution is time
dependent [5]. This state remains non-Hamiltonian with
no equivalent of a Gibbs measure. To attack this kind of
problem, one typically can start with a master equation
of the form

∂P (C, t)
∂t

=
∑
[C′]

{W [Ć −→ C]P (C ′, t)

−W [C −→ C ′]P (C, t)} (1)

and look for steady-state solutions. In the above,
P (C, t) is the probability of finding the system in the

configuration C at time t with a given initial condi-
tion. The dynamics is specified by the transition rate
[C ′ −→ C]. It is quite clear that Eq. (1) is nothing
but a balance equation. The first sum on the right-hand
side represents the “gain” terms, in which all configura-
tions from which C could possibly originate are summed
over. The second sum is the “loss” terms, which contains
all the possible ways the system can leave C. Thus,
the non-equilibrium steady state is fully described by
P ∗[C] = P [C, t → ∞] at the microscopic level. For the
majority of such steady states, there is a non-vanishing
uniform “current” in configuration space.

If one is to understand the non-equilibrium phenomena
occurring in real world systems such as the relaxation of
an initial ordered or disordered state to its final steady
state, the non-linearity of the feedback of the collective
non-equilibrium behavior in many particle systems, and
the nature of the temporal and spatial scaling of the
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system, it is important that the simple systems used to
model real systems have relevance to real systems and
capture the essence of the physics involved. Studying
these simple systems can then provide insight into the
nature of the real systems.

From a theoretical point of view, it is extremely diffi-
cult to analytically solve the master equation, Eq. (1).
Instead, one applies computational methods or analytic
methods containing approximations such as mean-field
theory, renormalization group, an so on. Dealing with a
very small, but analytically solvable system, allows one
to learn something from the system, especially when used
together with simulation and other approximate calcula-
tions. For example, in Ref. 6 Zia and Blum carried out
some calculations on a 2 × 3 system by using a model
similar to ours at finite temperature, but with zero field.
Their results showed the hallmarks of non-equilibrium
phenomena that violate the fluctuation-dissipation theo-
rem. Evans and Hanley [7] used a relatively small system
to locate the melting point of soft discs. While the cal-
culations using small system may not lead to better ana-
lytic methods for real systems, they may provide ways to
check possible new approaches to the more complicated
systems.

Motivated by the above, we aim to point to what
can be learned about some non-equilibrium systems by
performing calculations on a small system. To do this,
we will study systems of charged particles based on the
driven lattice gas model of Katz et al. [8]. In the lattice
gas model, each lattice site can be empty or be occu-
pied by a single charged particle. In addition to this
excluded volume constraint, the particle interacts with
an external, uniform field E. We consider the infinite
temperature limit, which means that no other interac-
tions between particles other than the correlation via the
excluded volume are taken into account in our dynam-
ics. This model differs from the ordinary Ising model
introduced by Lenz in 1925 [9], in that the particle can
hop to neighboring unoccupied sites with a rate specified
through a bias in the rate of hopping along an external
uniform driving field. The particle-vacancy (hole) ex-
changes follow the (conserved) Kawasaki dynamics [10]
with the Metropolis rates [11]:

[C −→ C ′] = min{1, exp[−qE∆y]}, (2)

where q(= ±1 or 0) is the charge of each particle, E
is the magnitude of the uniform external field (point-
ing downward), and ∆y is the change in the coordinate
(parallel to the field) of the particle and is equal to 1
(−1) if the jump is up (down). This transition rate is
used to satisfy the detailed balance condition to guar-
antee that when the system is started from a unstable
non-equilibrium configuration, it will reach steady state.
Some examples of real systems which may be connected
to this system (for a larger system size) are certain fast
ionic conductors or solid electrolytes with two different
ion species acting as charge carriers [12, 13] or water-
in-oil microemulsions in which the small water droplets

suspended in oil can carry electric charge [14,15]. These
systems have been generalized and studied to gain insight
into both the theoretical and the experimental aspects of
systems, such as the dynamics of ordering in bulk sys-
tems, following a rapid temperature quench [16] and the
dynamics of phase disordering after a rapid increase in
temperature [17].

This paper is organized as follows: In Section II, we
present the details of the different models case by case.
We show how to formulate the non-equilibrium master
equation for each case. In Section III, we solve the mod-
els analytically and discuss the key results. Finally, we
summarize and present some comments and remarks in
Section IV.

II. MODEL AND FORMULATION

In this section, we show how to set up the master equa-
tion for each case. Let N be number of particles and qi
be the charge of ith particles.

1. Case 1. N = 2, q1 = 1, q2 = −1

We consider here a 2 × 3 lattice system consisting of
two oppositely charged (q = ±1) particles. Each lattice
site can be described by one of two states: occupied or
unoccupied. The electric field results in a biased hopping
of the particles along one of the lattice directions. For a
positively charged particle, the field favors jumps along
its direction, suppresses jumps in the opposite direction,
and is neutral to jumps in the transverse directions. For
negatively charged particles, the opposite is true. Impos-
ing periodic boundary conditions in both directions, we
obtain translational invariance. Conservation of particle
numbers and the hard-core constraints (multiple occu-
pancy being forbidden) are also imposed.

Since there are two types of particles, we will have al-
together 6P2 = 30 possible configurations. If the transla-
tional invariance condition due to the periodic boundary
conditions is applied, the 30 possible configurations fall
into five groups. The members of each group can be
obtained from each other by a translation. (See Fig. 1).

Next, we derive the master equations describing the
dynamics of this system. This is done as follows:

We begin by drawing the diagrams of the probability
flow where the gain is represented by incoming arrows
and the loss is represented by outgoing arrows as shown
in Fig. 2(a). In that figure, we show only the first con-
figuration (i/1) of each group since the rest are obtained
in the same manner.

We next use Eq. (2) to calculate the transition rate
[C ′ −→ C]. This is illustrated in the diagram shown
in Fig.2(b) for the 1/1 configuration. The details of the
straightforward calculation are given below.
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Fig. 1. All possible configurations of a 2 × 3 system for
case1. (•) and (◦) represent positively and negatively charged
particles, respectively. The label i/j below each configuration
indicates the jth configuration belonging to the ith group.

Fig. 2. Schematics of the configurational probability flow.
The numbers inside the circles indicate the equivalent group
as in Fig.1. The direction of the arrow represents direction
of probability flow, the “gain” and “loss” terms

“Loss” contributions
1/1 −→ 2/1 the rate is min{1, exp[-(-1)E(-1)]} =

e−E

1/1 −→ 2/3 the rate is min{1, exp[-
(+1)E(+1)]}= e−E

1/1 −→ 3/1 the rate is min{1, exp[-(-1)E(+1)]}= 1
1/1 −→ 3/2 the rate is min{1, exp[-(+1)E(-1)]}= 1

“Gain” contributions
2/1 −→ 1/1 the rate is min{1, exp[-(-1)E(+1)]} = 1
2/3 −→ 1/1 the rate is min{1, exp[-(+1)E(-1)]} = 1
3/1 −→ 1/1 the rate is min{1, exp[-(-1)E(-1)]} =

e−E

3/2 −→ 1/1 the rate is min{1, exp[-(+1)E(+1)]} =
e−E

The same recipe can be used to calculate the other
rates entering into Pi (i = 1, 5).

We now write down the system of partial differential
equations for the Pi′s defined by Eq. (1). These equa-
tions use the fact that many of the configurations are
equivalent. The contributions from these configurations
would have the same weights. Letting x = e−E , we have

∂tP1 = −(2 + 2x)P1 + 2P2 + 2xP3

∂tP2 = 2xP1 − (4 + 2x)P2 + 2P3 + 2P5

∂tP3 = 2P1 + 2xP2 − (4 + 2x)P3 + 2P4

∂tP4 = 2P3 − 4P4 + 2xP5

∂tP5 = 2P2 + 2P4 − (2 + 2x)P5. (3)

These equations can be written as a matrix equation
∂tP = wP where ∂t = ∂

∂t and w is the matrix repre-
sentation of the associated probability density matrix.
The explicit matrix equation is


∂tP1

∂tP2

∂tP3

∂tP4

∂tP5

 =


−(2 + 2x) 2 2x 0 0

2x −(4 + 2x) 2 0 2
2 2x −(4 + 2x) 2 0
0 0 2 −4 2x
0 2 0 2 −(2 + 2x)



P1

P2

P3

P4

P5

 (4)

This completes the formulation of the master equa-
tions. In the next section, we will focus on solving these
equations.

2. Case 2. N = 3, q1 = q2 = −1, q3 = +1

We now consider the same 2 × 3 lattice system, but
with two negatively charged particles and one positively
charged particle. Everything else is the same. Following

the steps used in the previous case, we find that there are
60 (

6P3
2!1! ) configurations. The additional number is due to

the presence of two indistinguishable particles. The 60
configurations can be classified into 10 groups (See Fig.
3).

Using the technique outlined in the previous case, we
get the diagrammatic representation of the probability
flux flow shown in Fig. 4.

We obtain the 10 × 10 probability densities matrix.
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w =



−3 0 1 1 0 0 1 0 0 0
0 −(3 + x) x x 0 1 0 0 0 x
1 1 −(4 + 3x) 1 1 1 1 0 0 x
1 1 1 −(6 + x) x x 1 0 0 x
0 0 x 1 −(2 + 3x) 1 0 0 1 1
0 x x 1 x −(4 + x) 0 1 0 0
1 0 1 1 0 0 −(5 + 2x) 1 + x 1 + x 0
0 0 0 0 0 1 1 + x −(3 + 2x) 1 + x 0
0 0 0 0 1 0 1 + x 1 + x −(3 + 2x) 0
0 1 1 1 x 0 0 0 0 −(3 + x)


(5)

3. Case 3. N = 4, q1 = q2 = +1, q3 = q4 = −1

We next consider the same lattice system, but with two
negatively charged particles and two positively charged
particles. For this system, we have 90 (

6P4
2!2! ) configu-

rations. These 90 configurations can be classified into
sixteen distinct groups (See Fig. 5).

The master equations for this system are obtained in
the same manner as before. The resulting equations are
given below:

−(3 + x) 0 0 0 1 0 1 0 1 0 0 0 0 0 0 0
0 −4 0 0 0 0 0 0 0 0 2x 2x 0 0 0 0
0 0 −(2 + 2x) 0 2x 2 0 0 0 0 0 0 0 0 0 0
0 0 0 −(2 + 2x) 0 0 2x 2 0 0 0 0 0 0 0 0
1 0 2 0 −(4 + 2x) 2x 0 0 0 0 0 0 1 0 0 0
0 0 2x 0 2 −(4 + 2x) 0 0 0 0 0 0 0 1 1 0
1 0 0 2 0 0 −(2 + 4x) 0 0 0 1 1 1 0 0 0
0 0 0 2x 0 0 0 −6 0 0 x x 0 1 1 0
x 0 0 0 0 0 0 0 −(3 + x) 0 2 0 0 1 0 0
0 0 0 0 0 0 0 0 0 −(3 + x) 0 2 x 0 1 0
0 1 0 0 0 0 x 1 2 0 −(4 + 2x) 0 0 0 0 x
0 1 0 0 0 0 x 1 0 2 0 −(4 + 2x) 0 0 0 x
0 0 0 0 1 0 1 0 0 1 0 0 −(3 + x) 0 x 0
1 0 0 0 0 1 0 1 x 0 0 0 0 −(3 + x) 0 0
0 0 0 0 0 1 0 1 0 0 x 0 1 0 −(3 + x) 0
0 0 0 0 0 0 0 0 0 0 2 2 0 0 0 −4x

(6)

4. Case 4. N = 3, q1 = 1, q2 = 0, q3 = −1

We now consider the situation where there are three
(instead of two as with the previous three cases) types of
charged particles, negatively charged, positively charged,
and a zero (neutral) charged. There is one of each on

the lattice. Altogether, we will have 120 (6P3) configu-
rations. Using the same recipe as before, we obtain the
diagrams shown in Fig. 6.

The associated probability density matrix for this case
is given by Eq. 7.

−3 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0
0 −3 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 0 0
0 0 −(3+2x) 0 1 0 0 0 1 0 0 1 0 x 1 0 0 0 0 0
0 0 0 −(4+x) 0 1 0 0 0 x 0 0 1 0 0 0 1 0 x 0
0 0 1 0 −(3+2x) 0 0 0 0 0 1 0 0 0 0 1 0 1 0 1
0 0 0 1 0 −5 0 0 0 0 1 0 0 0 0 x 0 1 0 x
0 0 0 0 0 0 −(3+2x) 1 0 1 0 0 1 0 0 0 x 0 1 0
0 0 0 0 0 0 1 −(4+x) x 0 0 x 0 1 1 0 0 0 0 0
0 0 x 0 0 0 0 1 −(4+x) 0 1 1 0 0 x 0 0 0 0 0
0 0 0 1 0 0 x 0 0 −(3+2x) 0 0 0 0 0 0 1 0 1 1
0 0 0 0 x 1 0 0 1 0 −5 0 0 0 0 x 0 1 0 0
0 1 x 0 0 0 0 1 1 0 0 −(5+2x) 0 1 0 0 1 1 0 0
0 0 0 x 0 0 1 0 0 0 0 0 −(4+x) 1 0 0 x 0 1 0
0 0 1 0 0 0 0 1 0 0 0 x 1 −(3+2x) 1 0 0 0 0 0
1 0 1 0 0 0 0 x 1 0 0 0 0 x −(6+x) 1 0 0 1 0
1 0 0 0 1 1 0 0 0 0 1 0 0 0 1 −(5+2x) 0 0 1 1
0 1 0 1 0 0 1 0 0 x 0 1 1 0 0 0 −(5+2x) 1 0 0
0 1 0 0 x 1 0 0 0 0 1 1 0 0 0 0 1 −7 0 x
1 0 0 1 0 0 x 0 0 2 0 0 x 0 1 1 0 0 −(6+x) 0
0 0 0 0 1 1 0 0 0 1 0 0 0 0 0 1 0 1 0 −(3+2x)

(7)

III. EXACT RESULTS AND ANALYSIS In this section, we show how the master equations de-
rived in Section II can be solved. We will present in
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detail the analysis of case 1 only and quote the results
for the other cases. Furthermore, we will only look at

the steady-state case. Form Eq. (5) with

∂tP = 0, we have
−(2 + 2x) 2 2x 0 0

2x −(4 + 2x) 2 0 2
2 2x −(4 + 2x) 2 0
0 0 2 −4 2x
0 2 0 2 −(2 + 2x)



P ∗1
P ∗2
P ∗3
P ∗4
P ∗5

 = 0 (8)

where P ∗i represents the weight of a single configuration
within group i at the steady state and not the weight for
the group as a whole. Next, we row reduce the matrix
to get

1 0 0 0 −x3−4x2−3x−3
−3x2−4x−4

0 1 0 0 −x3−3x2−4x−3
−3x2−4x−4

0 0 1 0 −x3−4x2−4x−2
−3x2−4x−4

0 0 0 1 −2x3−4x2−4x−1
−3x2−4x−4

0 0 0 0 0



P ∗1
P ∗2
P ∗3
P ∗4
P ∗5

 = 0 (9)

The above form of the matrix equation clearly shows that
P ∗1 , P ∗2 , P ∗3 , and P ∗4 can be expressed in terms of P ∗5 . The
relative weights of these configurations at steady state
are

r1 =
x3 + 4x2 + 3x+ 3

3x2 + 4x+ 4

Fig. 3. All possible configurations of a 2 × 3 system for
case 2. There are 1 positively and 2 negatively charged par-
ticles.

r2 =
x3 + 3x2 + 4x+ 3

3x2 + 4x+ 4

r3 =
x3 + 4x2 + 4x+ 2

3x2 + 4x+ 4

r4 =
2x3 + 4x2 + 4x+ 1

3x2 + 4x+ 4
. (10)

where ri = P∗i
P∗5

. When the external field E is zero, x = 1
so ri = 1. When the field is very large (i.e., E −→ ∞),
x = 0, so r1 = r2 = 3

4 , r3 = 1
2 , and r4 = 1

4 . This is
expected since the configuration in group 5 is the most
probable one as can be explained by the following reason-

Fig. 4. Schematics of the configurational probability flow
of the model in case 2. The notations are the same as those
in Fig. 2.
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Fig. 5. All possible configurations of a 2 × 3 system for
case 3. The notations used are the same as the previous ones.

ing. The positively charged particle energetically favors
moving downward in the direction of the electric field
while the negatively charged particle moves in the oppo-
site direction. Given that a high field is present, there
will only be a small probability for transverse jumps.
This would result in there being obstruction between
movement of the oppositely charged particle. Using the
reverse reasoning, one can explain why group 4 is the
least likely. One can see that the configurations in group
2 have only one transverse jump different from those in
group 5. Subsequently, group 2 is the second most prob-
able one. However, at very high field, r1 = r2 since one
can ignore the transverse jump; i.e., only vertical jumps

Fig. 6. All possible configurations of a 2 × 3 system for
case 4.

play a significant role.
Using similar methods, the relative weights of the con-

figurations in cases 2 - 4 can be calculated. The results
are shown in Figs. 8 - 10, respectively.
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Fig. 7. Relative probability density function at steady
state versus x for case 1.

Fig. 8. Relative probability density function at steady
state versus x for case 2.

IV. SUMMARY AND CONCLUSION

We have studied two- and three-species Driven Lattice
Gas models on a 2 × 3 lattice system having fully peri-
odic boundary conditions and an externally applied field
through an exact calculation of the non-equilibrium mas-
ter equations. The two-species system consists of posi-
tively charged particles and negatively charged particles.
The three species system has, in addition, a neutrally
charged particle. We have calculated the probability dis-
tributions P ∗i at steady state and the relative probabil-
ities for the equivalent groups. We have analyzed the
steady-state solutions exactly.

For the two-species systems at steady state,we were
able to find the relative probabilities, ri, and find which

Fig. 9. Relative probability density function at steady
state versus x for case 3.

Fig. 10. Relative probability density function at steady
state versus x for case 4.

configuration was most likely. Specifically, the configu-
rations in groups 5, 10, and 16 are the most likely con-
figurations for the two, three, and four particle systems,
respectively. It should be noted that in the three-particle
system, P ∗5 is bigger than P ∗10 for very large E and their
ratio goes to one as e−E gets bigger. In the four-particle
system, it is worthy to note that for very large E, the
probabilities of all configurations go to zero, except for
the configurations belonging to group 16. In these sys-
tems, it is not difficult to see why the configurations in
group 16 are the most likely and those in group 7 are the
second most likely, the reason being the tendencies of the
positive particles to move downward (in the direction of
the field) and of the negative particles to move upward.
The results also show the ”degeneracy” of the probabil-
ities, namely P ∗1 = P ∗13, P ∗9 = P ∗10 and P ∗14 = P ∗15. It
is easy to see that the configurations in group 2 are the
least likely.
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For the three-species systems at steady state, we find
the configurations in group 20 are the most likely. Be-
cause there are many more parameters appearing in this
case, we were not able to obtain closed form expressions
for the relative probabilities. One can see, however, that
the graphs for this case are more or less, straighter (or
more linear) than those for the two-species system.

We finish this section by mentioning how this work re-
lates to a large system size and the connections between
our systems and real systems. A specific example of a
bigger size version which is closely related to our sys-
tems has been studied by Thies and Schmittmann [18].
In their paper, with the help of a Monte-Carlo simulation
and a mean-field theory (coarse-grained level), they in-
vestigated the ordered steady-state structures resulting
from the motion of a single vacancy on a lattice with pe-
riodic boundary condition, excluded volume constraint,
and constant external field. The systems contained two
species, positively and negatively charged, of particles
and was initially disordered. They found that for a non-
equilibrium steady state, the system underwent a charge
segregation whose ordered steady-state configuration ex-
hibited a phase separation approximately consistent with
our prediction. Since we only wish to illustrate how to
attack the non-equilibrium phenomena analytically by
using exact method, we have neglected the effects of tem-
perature. We have attempted to account for the violation
of the fluctuation-dissipation theorem (a benchmark of
non-equilibrium phenomena). Our calculation gives an
indication on how the dynamic phase-segregated or or-
dered system occurs when starting from a homogeneous
disordered system. However, to what extent the small
system reflects what would happen in the large system
when the number of species and/or density or particles
are increased depends on the details of the dynamics one
would apply.
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